

Tetrahedron Letters 40 (1999) 7651-7655

Mercuracarborand-catalyzed Diels-Alder reactions of a thionoester with cyclopentadiene

Hans Lee, Martin Diaz and M. Frederick Hawthorne *

Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA

Received 7 July 1999; accepted 16 August 1999

Abstract

The multidentate Lewis acids B-octamethyl [12]-mercuracarborand-4 (1) and B-hexamethyl [9]-mercuracarborand-3 (2) catalyze the Diels-Alder reaction of a thionoester 4 with cyclopentadiene. The reaction proceeds more rapidly when catalyzed with 1 and 2 than with monodentate bis(closo-9,12-dimethyl-1,2-carboran-1-yl)mercury (3). Mercury-199 NMR studies demonstrated the formation of a 1:1 complex of 1 with 4 in which the thio function of 4 is coordinated to the Hg(II) centers of 1, while the 2-4 and 3-4 complexes are not observed by NMR. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: carboranes; catalysis; thiocarbonyl compounds; mercury.

Catalyzed Diels-Alder reactions, involving electronic activation of a conjugated carbonyl group of the dienophile by certain Lewis acids, are known to exhibit enhanced reaction rates as well as regio-, and stereochemical selectivities. The recent emergence of multidentate Lewis acids which may concertedly coordinate to a conjugated carbonyl oxygen center^{2,3} can further enhance reactivity and selectivity.²⁻⁴ In contrast to these observations, the involvement of conjugated thiocarbonyl group complexation is limited^{5,6} and reports of Lewis acid-catalyzed thiocarbonyl mediated Diels-Alder reactions are scarce.⁷ We have previously reported a novel class of macrocyclic so-called mercuracarborands composed of ortho-carborane modules linked by electrophilic Hg(II) centers^{8,9} that readily complex anions such as Cl⁻, Br⁻, I⁻, and closo-B₁₀H₁₀²⁻ as well as a variety of uncharged nucleophilic species. While multidentate Lewis acidic hosts have attracted significant attention due to their potential to recognize, bind, and chemically activate complementary electron rich guests, 2-4,10 the insolubility of mercuracarborands in noncoordinating solvents has limited their use as homogenous catalysts. However, the recently reported synthesis of the B-octamethyl [12]-mercuracarborand-4 (1) and B-hexamethyl [9]-mercuracarborand-3 (2) (Fig. 1), has overcome this obstacle. 11 We report herein our initial results obtained using 1 and 2 as multidentate Lewis acids which catalytically activate an unsaturated thionoester for Diels-Alder reactions.

^{*} Corresponding author. Tel: 310-825-7378; fax: 310-825-5490; e-mail: mfh@chem.ucla.edu

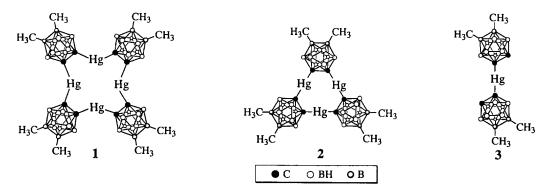


Figure 1. Representation of *B*-octamethyl [12]-mercuracarborand-4 (1), *B*-hexamethyl [9]-mercuracarborand-3 (2), and bis(*closo*-9,12-dimethyl-1,2-carboran-1-yl)mercury, (3)

Table 1
Diels-Alder reactions of a thionoester and cyclopentadiene

The reaction of a 1 M methylene chloride solution of *O*-methyl *trans*-2-butenethioate (4)¹² with 1.5 mol equiv. of cyclopentadiene and 0.02 equiv. of 1,¹³ after 2.5 days at 0°C yields racemic mixtures of *endo* (5)¹⁴ and *exo* (6)¹⁵ products. An *endo:exo* ratio of 60:40 is observed, based upon integrated ¹H NMR spectra, with an 89% total yield based on ¹H NMR spectroscopy (75% recovered yield). Under similar conditions, a 1 M methylene chloride solution of 4 with 1.5 mol equiv. of cyclopentadiene and 0.02 equiv. of 2 led almost exclusively to the *endo* isomer (99:1) with a 94% ¹H NMR yield (83% recovered) after 7.5 days at 0°C. For comparison, the use of 0.02 equiv. of monodentate bis(*closo*-9,12-dimethyl-1,2-carboran-1-yl)mercury (3)¹⁶ required 11 days to predominantly form the *endo* isomer (99:1) in 65% isolated yield. These and other examples are listed in Table 1. All reactions were carried out under nitrogen and monitored by ¹H NMR. The ¹¹B NMR spectra of the completed reaction mixtures confirmed that structures 1–3 remained intact. ¹⁷ No product formed when 1–3 were excluded from the reaction mixture and the use of HgI₂ and Hg(OAc)₂ did not lead to Diels–Alder products.

The complexation of 1–3 with 4 was studied by ¹⁹⁹Hg NMR spectroscopy, a technique that is very sensitive to changes in the immediate environment surrounding the mercury centers. ¹⁸ Due to similar ¹H, ¹³C, and ¹¹B NMR spectra of both complexed and uncomplexed mercuracarborands, ⁹ ¹⁹⁹Hg NMR serves as the most useful probe for observing host/guest interactions. The ¹⁹⁹Hg NMR resonance of a 0.02 M CH₂Cl₂ solution of 1 (concentration is equiv. to that used in the catalyzed Diels–Alder reactions) was observed at –1204 ppm. ¹⁹ The addition of a 0.5 mol equiv. of 4 to the CH₂Cl₂ solution of 1 resulted in two resonances which corresponded to a complex species at –997 ppm and a broad peak

^a Isolated yields. ^b Determined by 400 MHz ¹H NMR analysis.

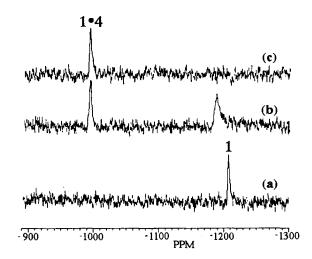


Figure 2. A 199 Hg NMR study on the addition of 4 to a 0.02 M CH $_2$ Cl $_2$ solution of 1 with 4:1 ratios of: (a) 0.0; (b) 0.5; and (c) 1.0

at -1190 which was shifted 14 ppm downfield from 1 (Fig. 2).²⁰ The direction of the ¹⁹⁹Hg shift was consistent with the previously reported complexation by bis(trifluoroacetato)-1,2-phenylenedimercury and a thiobenzophenone.⁵ Upon addition of 1 equiv. of 4 to 1, only a sharp resonance at -997 ppm was observed. When more than 1 equiv. was added, no further change in the spectrum was observed. The sharp resonance at -997 ppm is presumed to arise from the 1·4 complex. The 1·5 and 1·6 complexes both have resonances at -997 ppm. The broadened resonance at -1190 ppm accompanied by the downfield shift of 14 ppm from that of 1, is tentatively explained by weak indeterminate interactions between 1 and the 1·4 complex, resulting in a rapid (fast on NMR timescale) and reversible process.⁹ Similar experiments involving the incremental addition of 4 to 2 and 3, respectively, showed no apparent change in peak broadness or chemical shift. The observation of Diels-Alder catalysis with both 2 and 3 and the absence of a ¹⁹⁹Hg NMR chemical shift difference when 2 and 3 are in the presence of 4 suggests that the postulated 2·4 and 3·4 precursor complexes are present in very low concentrations in contrast to the efficient complexation of 1 and 4, assuming that all of these processes proceed by similar mechanisms.

A general mechanism illustrating Diels-Alder reactions catalyzed by 1 is depicted in Scheme 1. The first step in the proposed catalytic cycle involves a rapid (slow on NMR time scale) and reversible coordination of the mercuracarborand and 4, thereby converting essentially all available 1 to a discrete 1.4 thionoester complex. The activated thionoester in complex 1.4 subsequently undergoes Diels-Alder reactions with cyclopentadiene leading to the isomeric 5 and 6 adducts. Dissociation of 5 and 6 from their mercuracarborand complexes completes the catalytic cycle.

The 199 Hg NMR studies demonstrate that complex 1.4 is more stable than the corresponding 2.4 and 3.4 complexes. The enchanced stability of 1.4 may explain the formation of both *endo* and *exo* cycloaddition products through a late transition state, while the less stable 2.4 and 3.4 precursors lead to the kinetically preferred *endo* isomer. The observed relative reactivity of the catalytically active species is 1>2>3. The enhanced reactivity observed with 1 compared with 2 and monodentate 3, may indicate that only 1 is capable of multiple mercury coordination to the C=S group of 4.

X-Ray crystallography has demonstrated coordination of the oxygen of an amide function and a mercury-based multidentate Lewis acid.³ Similarly, X-ray crystallography of 1 crystallized in acetone, shows eight acetone molecules with each carbonyl group simultaneously coordinating two adjacent mercury atoms of 1.²² However, the attempted reaction of 1–3 with methyl crotonate (7) and cyclopentadiene

5,6 CH₃

$$H_3C$$

$$H_3C$$

$$= B\text{-octamethyl [12]-mercuracarborand-4, 1.}$$

Scheme 1.

at room temperature for 8 days, resulted in no product formation. No evidence of complexation of 7 with 1 and 2 was observed by ¹⁹⁹Hg NMR spectroscopy in agreement with the suggestion that 1 and 2 are soft Lewis acids and more tightly bound to the soft sulfur atom of 4 in contrast to the harder carbonyl oxygen of 7. Studies of 1–3 and related catalysts in other processes are in progress.

Acknowledgements

We are grateful to the National Science Foundation (Grant No. CHE-9730006) for their support of this research and Dr. Taeboem Oh for helpful discussions regarding thionoesters.

References

- 1. (a) Oh, T.; Reilly, M. Org. Prep. Proced. Int. 1994, 26, 129. (b) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007.
- (a) Asao, N.; Kii, S.; Hanawa, H.; Maruoka, K. Tetrahedron Lett. 1998, 39, 3729. (b) Ooi, T.; Takahashi, M.; Maruoka, K. J. Am. Chem. Soc. 1996, 118, 11307. (c) Adams, R. D.; Chen, G.; Chen, L.; Wu, W.; Yin, J. J. Am. Chem. Soc. 1991, 113, 9406.
- 3. (a) Vaugeois, J.; Simard, M.; Wuest, J. D. Organometallics 1998, 17, 1215. (b) Simard, M.; Vaugeois, J.; Wuest, J. D. J. Am. Chem. Soc. 1993, 115, 370. (c) Sharma, V.; Simard, M.; Wuest, J. D. J. Am. Chem. Soc. 1992, 114, 7931.
- 4. Vaugeois, J.; Simard, M.; Wuest, J. D. Coord. Chem. Rev. 1995, 145, 55.
- 5. Wuest, J. D.; Zacharie, B. J. Am. Chem. Soc. 1985, 107, 6121.
- (a) Kohler, J. U.; Lewis, J.; Raithby, P. R. Angew. Chem. Int. Ed. Engl. 1996, 35, 993.
 (b) Alper, H.; Silavwe, N. D.; Birnbaum, G. I.; Ahmed, F. R. J. Am. Chem. Soc. 1979, 101, 6582.
- 7. (a) Saito, T.; Fujii, H.; Hayashibe, S.; Matsushita, T.; Kato, H.; Kobayashi, K. J. Chem. Soc., Perkin Trans. 1 1996, 1897. (b) Braddock, D. C.; Brown, J. M.; Guiry, P. J. J. Chem. Soc., Chem. Commun. 1993, 1244. (c) Motoki, S.; Saito, T.; Karakasa, T.; Kato, H.; Matsushita, T.; Hayashibe, S. J. Chem. Soc., Perkin Trans. 1 1991, 2281.
- 8. (a) Yang, X.; Zheng, Z.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1993, 115, 193. (b) Yang, X.; Knobler, C.B.; Hawthorne, M. F. Angew. Chem., Int. Ed. Engl. 1991, 30, 1507.
- (a) Hawthorne, M. F.; Zheng, Z. Acc. Chem. Res. 1997, 30, 267.
 (b) Zheng, Z.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1995, 117, 5105.
 (c) Yang, X.; Zheng, Z.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1994, 116, 7142.
 (d) Hawthorne, M. F.; Yang, X.; Zheng, Z. Pure Appl. Chem. 1994, 66, 245.
 (e) Yang, X.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1992, 114, 380.
- For references to recent work on multidentate Lewis acids, see: (a) Vaugeois, J.; Wuest, J. D. J. Am. Chem. Soc. 1998, 120, 13016. (b) Tschinkl, M.; Schier, A.; Riede, J.; Gabbai, F. P. Inorg. Chem. 1997, 36, 5706. (c) Saied, O.; Simard, M.; Wuest, J. D. Organometallics 1996, 2345. (d) Reilly, M.; Oh, T. Tetrahedron Lett. 1995, 36, 217.

- (a) Zinn, A. A.; Zheng, Z.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1996, 118, 70. (b) Zheng, Z.; Knobler, C. B.; Mortimer, M. D.; Kong, G.; Hawthorne, M. F. Inorg. Chem. 1996, 35, 1235.
- 12. (a) Synthesized using trimethyloxonium tetrafluoroborate using the method of: Hoffman, R.; Hartke, K. Chem. Ber. 1980, 113, 919. (b) Alternatively from O-methyl (dimethoxyphoshinyl)-thioacetate using the method of: Hartke, K.; Kunze, O.; Hoederath, W. Synthesis 1985, 960.
- 13. AgBF₄ instead of AgOAc was used to form empty host 1.
- 14. (a) (*S*,*R*)-*O*-methyl *endo*-bicyclo[2.2.1]hept-5-ene-2-thionocarboxylate-3-methyl (5). (b) Separated by HPLC using a silica column with a mixture of acetonitrile and pentane. (c) Spectroscopic data for compound 5: ¹H NMR [400 MHz, CDCl₃]: δ 6.23 (dd, 1H, *J*=5.7, 3.1 Hz), 5.93 (dd, 1H, *J*=5.7, 2.8 Hz), 4.01 (s, 3H), 3.20 (br s, 1H), 2.71 (dd, 1H, *J*=4.5, 3.6 Hz), 2.43 (br s, 1H), 2.05–1.98 (m, 1H), 1.58–1.56 (m, 1H), 1.41 (ddd, 1H, *J*=8.6, 3.5, 1.8 Hz), 1.18 (d, 3H, *J*=7.0 Hz); ¹³C{¹H} NMR [90 MHz, CDCl₃]: δ 226.4 (C=S), 138.3, 133.0 (C=C), 63.6 (C2), 58.8 (OCH₃), 49.1 (C4), 48.4 (C1), 46.3 (C7), 40.6 (C3), 20.9 (CH₃); HRMS (EI) for C₁₀H₁₄OS (*m/z*) calcd: 182.0765; found: 182.0765 (M⁺).
- 15. (a) (S,R)-O-methyl exo-bicyclo[2.2.1]hept-5-ene-2-thionocarboxylate-3-methyl (6). (b) Separated by HPLC using a silica column with a mixture of acetonitrile and pentane. (c) Spectroscopic data for compound 6: ${}^{1}H$ NMR [400 MHz, CDCl₃]: δ 6.24 (dd, 1H, 5.8, J=3.2 Hz), 6.10 (dd, 1H, 5.7, J=3.1 Hz), 4.08 (s, 3H), 2.95 (br s, 1H), 2.68 (br s, 1H), 2.43 (br s, 1H), 2.08 (dd, 1H, 5.2, J=1.5 Hz), 2.04–1.98 (m, 1H), 1.87–1.85 (m, 1H), 0.91 (d, 3H, J=6.9 Hz); ${}^{13}C\{{}^{1}H\}$ NMR [90 MHz, CDCl₃]: δ 228.1 (C=S), 137.2, 135.9 (C=C), 62.8 (C2), 59.0 (OCH₃), 49.7 (C7), 47.8, 47.6 (C1, C4), 42.3 (C3), 19.2 (CH₃); HRMS (EI) for $C_{10}H_{14}OS$ (m/z) calcd: 182.0765; found: 182.0768 (M $^{+}$).
- 16. Zakharkin, L. I.; Bregadze, V. I.; Okhlobystin, O. Y. J. Organometal. Chem. 1965, 4, 211.
- 17. The ¹¹B NMR spectra is identical to that of 1-3, respectively.
- 18. Maciel, G. E.; Borzo, M. J. Magn. Reson. 1973, 10, 388.
- External 0.5 M PhHgCl/DMSO-d₆ solution was used as the reference at −1187 ppm relative to neat HgMe₂. Sens, M. A.;
 Wilson, N. K.; Ellis, P. D.; Odom, J. D. J. Magn. Reson. 1975, 19, 323.
- 20. A 10 mm NMR tube containing a CH₂Cl₂ solution of 1 (0.02 M) and 4 (0.01 M or 0.02 M) were allowed to equilibrate approximately 12 h, then the ¹⁹⁹Hg{¹H} NMR spectra were recorded at 25°C with a Bruker 500 spectrometer at 89.6 MHz by using broad-band decoupling.
- 21. Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334.
- 22. Lee, H.; Knobler, C. B.; Hawthorne, M. F. Unpublished results.